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1.1. LIQUIDS 

AN OVERVIEW OF RAYLEIGH-TAYLO R INSTABILITY* 

D.H. SHARP 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 

The aim of this talk is to survey Rayleigh-Taylor instability, describing the phenomenology that occurs at a Taylor unstable 
interface, and reviewing attempts to understand these phenomena quantitatively. 

1. Introduction 

The Rayleigh-Taylor instability is a fingering 
instability of  an interface between two fluids of  
different densities, which occurs when the light 
fluid is pushing the heavy fluid [1, 2]. The aim of  
this talk is to survey Rayleigh-Taylor instability, 
describing the phenomenology that occurs at a 
Taylor unstable interface, and reviewing attempts 
to understand these phenomena quantitatively. I 
will also emphasize some critical questions which 
require further study. 

2. Simplest explanation of the occurrence of 
Rayleigh-Taylor instability 

(A) 

(B) 

(c) 

~////////A ~ ~ ~ Y///////A 

This conference affords the pleasure of  learning 
about a great variety of  topics from speakers with 
the most diverse backgrounds. In view of  this 
diversity, I hope the experts will forgive me if I 
begin with the simplest possible description of  
Rayleigh-Taylor instability. 

Imagine the ceiling of  a room plastered uni- 
formly with water to a depth of  1 meter (fig. 1). The 
layer of  water will fall. However, it is not through 
lack of  support from the air that the water will fall. 
The pressure of  the atmosphere is equivalent to 
that of  a column of  water 10 meters thick, quite 
sufficient to hold the water against the ceiling. But 
in one respect the atmosphere fails as a supporting 

* Work supported by the U.S. Department of Energy. 

Fig. 1. (A) The pressure of the air is quite sufficient to support 
a perfectly uniform layer of water 1 meter thick against the 
ceiling. (B) But the air pressure can not constrain the air-water 
interface to flatness. Ripples or irregularities will inevitably be 
present at the interface. ((2) The irregularities grow, forming 
"bubbles" and "spikes." The water falls to the floor. 

medium. It fails to constrain the air-water inter- 
face to flatness. No matter how carefully the water 
layer was prepared to begin with, it will deviate 
from planarity by some small amount. Those 
portions of  the fluid which lie higher than the 
average experience more pressure than is needed 
for their support. They begin to rise, pushing aside 
water as they do so. A neighboring portion of  the 
fluid, where the surface hangs a little lower than 
average, will require more than average pressure 
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for its support. It begins to fall. The air cannot 
supply the variations in pressure from place to 
place necessary to prevent the interface irregu- 
larities from growing. The initial irregularities 
therefore increase in magnitude, exponentially with 
time at the beginning. The water which is moving 
downward concentrates in spikes. The air moves 
upward through the water in round topped col- 
umns. The water falls to the floor. 

The same layer of water lying on the floor would 
have been perfectly stable. Irregularities die out. 
Thus we can infer a simple criterion for the onset 
of Taylor instability at the interface between two 
fluids of different densities: I f  the heavy fluid pushes 
the light fluid, the interface is stable, l f  the light fluid 
pushes the heavy fluid, the interface is unstable. A 
criterion of comparable simplicity governs the 
onset of Kelvin-Helmholtz instability: The inter- 
face between two fluids is unstable if  there is a jump 
in the tangential component of  the velocity across the 
interface. These two criteria are among the most 
basic principles in the subject of interface in- 
stability. 

3. Examples of Rayleigh-Taylor instability 

Loser light ~ Tomper 
~Outer 

surface 
unstable 

"coast~ 

surface 
unstable 

Fig. 2. Schematic diagram of the implosion of DT pellet. 

intense laser light, which causes it to accelerate 
inward. The outer surface of the tamper is the 
interface between a heavy fluid (metal) and a light 
fluid (vaporized metal) and is unstable during the 
initial phase of the implosion. As the pellet is 
compressed to perhaps 1,000 times its normal 
density, its pressure increases until it is sufficient to 
slow the inward motion of the tamper. This phase 
of the implosion is also Taylor unstable; here it is 
the DT which is pushing the tamper. Although this 
picture of the implosion of a DT pellet is so 
oversimplified as to be almost ridiculous, it never- 
theless suggests quite clearly that Taylor instability 
is a factor to be dealt with in evaluating pellet 
performance [7]. 

Taylor instability occurs in diverse situations. As 
examples, we mention: 
A. Natural phenomena 

i) Overturn of the outer portion of the collapsed 
core of a massive star [3]; 

ii) the formation of high luminosity twin- 
exhaust jets in rotating gas clouds in an external 
gravitational potential [4]. 
B. Technological applications 

i) Laser implosion of deuterium-tritium fusion 
targets [5]; 

ii) electromagnetic implosion of a metal liner 
[6], and several others. 

Let us take a quick look at one of these exam- 
pies. A highly schematic picture of the implosion 
of a deuterium-tritium (DT) pellet is as follows 
(fig. 2). A sphere of DT is surrounded by a glass 
or metal tamper. This tamper is irradiated with 

4. Phenomenology of Rayleigh-Taylor instability 

There is a complex phenomenology associated 
with the evolution of a Taylor unstable interface. 
This includes the formation of spikes, curtains and 
bubbles, the development of Helmholtz instability 
on the side of the spikes, competition among 
bubbles leading to their amalgamation, formation 
of droplets, entrainment and turbulent mixing, and 
a possible chaotic limit with a fractalized interface. 

It is helpful to organize a description of the 
growth of the instability into a number of stages. 
This can be done as follows [8, 9]. 

Stage 1. If the initial perturbations in the inter- 
face or velocity field are extremely small, the early 
stages in the growth of the instability can be 
analyzed using the linearized form of the dynam- 
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ical equations for the fluid. The result is that small 
amplitude perturbations of wavelength 2 grow 
exponentially with time. When the amplitude of 
the initial perturbation grows to a size of order 
0.12 to 0.42, substantial deviations from the linear 
theory are observed. 

Stage 2. During the second stage, while the 
amplitude of the perturbation grows nonlinearly to 
a size of order 2, the development is strongly 
influenced by three-dimensional effects and the 
value of the density ratio, or Atwood number 
A = (prl - PL)/(PH + Pl), where Pri = density of 
heavy fluid, PL = density of light fluid. 

If A ~< 1, the light fluid moves into the heavy 
fluid in the form of round topped bubbles with 
circular cross sections. Note that "two- 
dimensional" plane bubbles are unstable to per- 
turbations along the axis perpendicular to the 
plane of the bubble, and a trough having a plane 
bubble as a cross section will break up into three- 
dimensional bubbles. The heavy fluid will form 
spikes and walls or curtains between the bubbles, 
so that a horizontal section would show a honey- 
comb pattern. If A >~ 0, one will instead find a 
pattern more like two sets of interpenetrating 
bubbles. 

Note that these pictures are rather different from 
the simpler patterns of bubbles and spikes that we 
think of in two dimensions. I will nevertheless 
often refer to bubbles and spikes for the sake of 
simplicity. 

Stage 3. The next stage is characterized by the 
development of structure on the spikes and inter- 
actions among the bubbles. These phenomena can 
originate from several sources. There is a nonlinear 
interaction among initial perturbations of different 
frequency. Also Helmholtz instability along the 
side of the spike can cause it to mushroom, in- 
creasing the effect of  drag forces on the spike. This 
effect is more pronounced at low density ratios. 
There is some experimental evidence for bubble 
amalgamation, a process in which large bubbles 
absorb smaller ones, with the result that large 
bubbles grow larger and move faster. 

The presence of heterogeneities in various phys- 
ical quantities can modify the shape and speed of 
bubbles and spikes to a degree which depends on 
the strength and length scale of the heterogeneity. 

Stage 4. In the final stage, we encounter the 
breakup of the spike by various mechanisms, the 
penetration of a bubble through a slab of fluid of 
finite thickness and other complicated behavior 

Table I 
Some factors influencing the development of Rayleigh-Taylor instability 

Factor 

Density ratio 

Surface tension 

Viscosity 

Compressibility 

Heterogeneity 

Relative size of effect 
(dimensionless parameter) 

PH/PL o r  A = (PH --PL)/(PH +PL) 

Weber number = 2(r/(pH _pl.)g,~ 2 

R = vt/~ 2 

G = g/ke2 = (phase velocity of gravity waves): 
(sound speed) 2 

ALI~, Av/v. . .  

Effect on growth of instability 

A key factor governing the growth rate of 
Rayleigh-Taylor or Kelvin-Helmholtz instability for 
small amplitude perturbations of 
wavelength £. 

In linear theory, stabilizes w a v e l ~ r t e r  
than a critical wavelengtl/;t = x/~/g(ga--OL). 
Establishes a most unstable wavelength, hence 
probably makes problem ~'ell posed mathematically. 

Reduces growth rate; regularizes fluid flow. 

Reduces growth rate of long wavelength perturbations; 
decreases active volume of fluid. 

Can excite secondary, tertiary . . . .  instabilities of 
various wavelengths. 
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that leads to a regime of turbulent or chaotic 
mixing of the two fluids. 

5. Factors influencing the development of 
Rayleigh-Taylor instability 

Numerous factors influence the development of 
Taylor instability in a simple fluid. These include 
surface tension, viscosity, compressibility, effects 
of converging geometry, three-dimensional effects, 
the time dependence of the driving acceleration, 
shocks, and a variety of forms of heterogeneity. An 
assessment of some of these factors is given in 
table I. 

6. Other factors which may be operative 
in realistic problems 

In natural phenomena and technological appli- 
cations where Taylor instability occurs, there are 
many other factors that can play an important 
role. For example, material properties and the 
equation of state of the fluids may be important. 
The fluids may conduct heat or diffuse mass. The 
material may change phase or consist of several 
components. Radiation often couples to hydro- 
dynamics. 

It is not easy for me to imagine dealing 
scientifically with the whole range of factors that 
can influence Rayleigh-Taylor instability, so in this 
talk I will restrict myself to a few of the factors 
which effect the behavior of simple fluids. It is a 
little bit humbling to recall that engineers must 
deal with Taylor instability in its full complexity. 

7. Analytic and quasi-analytic modeling 

The purpose of analytic modeling is to identify 
the effects which are dominant during a given stage 
in the development of the instability. 

7.1. Linear analysis 

There is a considerable body of literature which 
analyzes the initial stage in the growth of small 
amplitude Taylor instability, where the linearized 
form of the equations of fluid dynamics can be 
used, 

7.1.1. Plane geometry 
As an example, consider two infinitely extended 

inviscid fluids which meet at a plane interface (fig. 
3). For definiteness, we suppose the upper fluid is 
heavier, PI~ > PL" The fluids are subjected to a 
constant acceleration in a direction normal to the 
interface. We write the total effective acceleration 
as G = (a - g )  = (a + g)~ = G£, with g > 0 and £ 
a unit vector normal to the interface, pointing into 
the heavy fluid. The gravitational acceleration is 
g = - g £  and a = a£ is a uniform external acceler- 
ation applied to the system as a whole. Thus, when 
G > 0, the effective acceleration acts vertically up- 
ward, the light fluid accelerates the heavy fluid, and 
the configuration is unstable according to the 
criterion we discussed above. 

One works in a noninertial frame comoving with 
the unperturbed interface. In this frame, the un- 
perturbed fluids are at rest and the unperturbed 
interface is defined by z = 0. The pressure fields in 
the fluids vary with the vertical coordinate z to 
balance the total acceleration and permit static 
equilibrium (in the comoving frame). 

Fluid I 
Density PH 

Unperturbed Interface 
z=o f 

Fluid P 
Density PL 

~ (x,t)= ~ (t) cos kx 

PH>PL. 

Fig. 3. Two incompressible fluids of  infinite depth, having 
densities PH, PL, meet at an interface. For t < 0, the interface is 
the plane z = 0. For  times t /> 0, the interface has  a perturbed 
shape. The simple case Z,=~l(t)coskx is illustrated in the 
figure. 
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This is the picture for t < 0. At t = 0, we perturb 
the configuration in some way. We might suppose 
that the fluid is initially at rest but that the 
interface is perturbed so as to have the form 

(fig. 4) that there is a fastest growing, or most 
unstable, wavelength £M. This is given by 

~M = ~/3~c • (6) 

Z ~ = r l ( t ) c o s k x ,  [r/(t)/;~ ,~ 1]. (1) 

Thus the interface now consists of  a set of  crests 
and troughs parallel to the y-axis. 

One may then show, using either a potential 
theory argument via Bernoulli's equation or a 
simple energy analysis, that the amplitude of  the 
perturbation is determined by the equation [10] 

i i ( t )  = ~2(k )~l(t) , (2) 

with 

Here tr is the coefficient of  interfacial tension. 
The solution to (2) for fluids initially at rest is 

r/(t) = r/(0) cosh ~t. (4) 

Several simple but useful conclusions can be 
drawn from (3): 

If  a~ = 0, G > 0 and Prt > PL, ~ is real and the 
interface is unstable. The growth rate for short 
wavelengths is unbounded, so on the basis of  linear 
analysis the Rayleigh-Taylor problem would ap- 
pear to be ill-posed in the absence of  surface 
tension. However, we note that there is no rigorous 
theorem available which says either that the 
Rayleigh-Taylor problem is ill-posed in the ab- 
sence of  surface tension or that it is well-posed 
when surface tension is included. For G < 0, ~ is 
imaginary and one has stable gravity waves. 

Surface tension stabilizes perturbations shorter 
than a critical wavelength 

~c = [a /G(PH -- pL)]l/2. (5) 

The shape of  the dispersion curve makes it plain 

The above analysis can be generalized in several 
ways. For example, in the linear approximation we 
can superpose harmonic interface perturbations in 
the x and y directions to give a three-dimensional 
treatment of  the instability. 

Also, the linear treatment can be generalized to 
include other physical effects such as com- 
pressibility [11, 12], nonuniform accelerations [13], 
shocks [14], density gradients [10, 15], slab geome- 
try [16], and so forth. A thorough analysis of  the 
role of  viscosity is available [10, 17, 18]. 

Finally, one can treat general initial conditions 
[18, 19]. Solutions of  the linearlized equations satis- 
fying general initial conditions can be expressed in 
terms of  Fourier-Laplace transforms of  the hydro- 
dynamic variables, although the results can get 
quite complicated. 

7.1.2. Spherical  g e o m e t r y  

Taylor instability at a spherical interface has 
been studied by several authors [20-25]. Results of  
generality comparable to those obtained in plane 
geometry are not available, owing to the greater 
mathematical complexity of  the equations encoun- 
tered in curved geometries. There is, moreover, a 
new effect at work in curved geomet r ies -a  con- 
vergent geometry can itself be destabilizing. 

a2 

(1 /~  M ) ( l / ~  c } 

Fig. 4. Schematic plot of  ~,2 vs. k, eqn (3). 
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This can be seen readily in the case where the 
fluids are incompressible [25]. If  R(t )  is the radius 
of the unperturbed spherical interface, and if the 
perturbations 6R are expanded in Legendre func- 
tions, 6R = Zn an(t)Pn(cos ok), then the amplitudes 
an(t) can be shown to satisfy 

iin(t) + (31~/R)~n(t) - ~2(n)(R/R)an(t) = 0,  (7) 

with 

ct2(n) _ n(n -- 1)p2 -- (n + 1)(n + 2)pl (8) 
np2 + (n + 1)pl 

Here p: = the density outside the interface, Pl = the 
density inside the interface, and n = the mode 
number of the spherical harmonic describing the 
perturbation. 

For large R, (7) goes over to the usual 
Rayleigh-Taylor result. However, if pl~p: ,  (7) 
takes the form 

iin(t) + (31~/R)an(t) + (2R/R)an(t) = 0. (9) 

This equation can have unstable solutions, de- 
pending on the behavior of R(t).  Thus a spherical 
interface can be unstable even if there is no discon- 
tinuity in density across it. The relative importance 
of classical Rayleigh-Taylor effects and geometric 
or convergence effects depends strongly on com- 
pressibility and the acceleration history of the 
interface. This dependence can best be studied 
numerically. 

7.2. Nonlinear modeling 

Next I will briefly discuss some attempts to 
model the nonlinear growth of  spikes and bubbles. 

First, an exact closed form solution valid for a 
finite time T has been derived by Ott [26] for the 
Taylor unstable motion of a fluid layer idealized as 
having infinitesimal thickness. An initial sinusoidal 
perturbation evolves into a cycloid. After time T 
adjacent segments of the fluid collide and the 
development cannot be followed analytically.. 

There have been a number of attempts to model 
the growth of spikes and bubbles in more general 
settings. These models are based on one or another 
set of drastic simplifying assumptions which it is 
hoped capture the zeroth order physics correctly 
and permit the dynamics to be described by ordi- 
nary differential equations. 

The easiest model to describe is that of Fermi 
[27], who considered incompressible fluids in the 
limit of infinite density ratio. He considered an 
initial sinusoidal perturbation, which was then 
approximated by a polygon, i.e., by a square wave 
profile (fig. 5). The interface is thus described by 3 
parameters; the heights of the spike and bubble 
(a, b), and the width of the spike (x). The condi- 
tion of incompressibility provides one relation 
between these parameters. Fermi next estimates the 
kinetic energies associated with the horizontal and 
vertical motions of the spike, and with the motion 
of the fluid above the spike and bubble, as well as 
the potential energy of the fluid, in terms of the 
parameters a and x. This yields a set of coupled 
nonlinear ordinary differential equations for a(t) 
and x(t) .  The results were that the asymptotic 
speed of the spike was roughly correct, but the 
speed of the bubble was not correct. 

More recent attempts along these lines are due 
to Baker and Freeman [28] and Crowley and 
Levermore [29]. Baker and Freeman [28] derive 
(uncoupled) ODE's for the time evolution of spike 

t m - - - - w g t e r ~ -  m - . . . . . . =  

Fig. 5. Fluid configuration analyzed in Fermi's model. 
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and bubble peak amplitudes by devising functions 
which interpolate regimes of small and large ampli- 
tude behavior. The model produces results for the 
motion of the tips of spikes and bubbles which 
appear to be in reasonable agreement with code and 
experimental determination of these quantities. 

Crowley and Levermore [29] have devised an 
ODE for the time development of an amplitude 
which is in some sense an envelope of an ensemble 
of initial perturbations. 

My appraisal of this kind of work is as follows: 
If such models should turn out to be sufficiently 

accurate for their intended application, they would 
enjoy the advantage of any good model: They 
would express in relatively simple form the govern- 
ing physics of the problem. 

It is not possible to assess a priori the validity of 
the approximations made in deriving the models. 
This means that they must be developed in close 
conjunction with numerical codes and, where pos- 
sible, experiment. This is no bad thing-indeed, 
one would hope that high quality codes might help 
one to develop more refined and better validated 
models. 

A weak point of such models is that they do not 
seem to help with the most difficult aspects of 
Rayleigh-Taylor instability: interactions of per- 
turbations of different frequency, the effects of 
statistically distributed heterogeneities, break-up 
of spikes and bubble amalgamation. 

7.3 Rising bubbles 

There are a number of studies which analyze the 
motion of symmetrical bubbles rising under grav- 
ity. The steady state motion of cylindrically sym- 
metric bubbles rising in a tube of circular cross 
section has been treated by Davies and Taylor [30], 
who give approximate expressions for the speed of 
the tip of the bubble and for the profile of the 
bubble near the tip. Layzer [31] has given an 
approximate solution to the nonlinear equations 
determining this flow which interpolates between 
the initial small amplitude motion and the steady 
state motion. 

Birkhoff and Carter [32] and Garabedian [33] 
discuss plane bubbles rising between parallel walls. 
They formulate this problem rigorously in terms of 
nonlinear integral equations, and their work in- 
cludes an investigation of the existence and unique- 
ness of solutions to these equations. 

Although bubble rise in a gravitational field is 
not identical to the Rayleigh-Taylor problem, it is 
closely related and is of course of interest in its own 
right. Moreover, the results of Davies and Taylor 
and of Layzer have been incorporated into certain 
phenomenological models of the late stage of 
Taylor instability, while those of Birkhoff and 
Carter have proven useful in validating numerical 
codes which compute Taylor instability. Also, the 
papers of Birkhoff and Carter and of Garabedian 
are examples of a rather sparse body of mathe- 
matically rigorous work on problems closely re- 
lated to Taylor instability. 

8. Numerical computation' 

In the simplest formulation of  Rayleigh-Taylor 
instability, the governing equations are the two- 
fluid, two-dimensional incompressible Euler equa- 
tions. As mentioned above, these equations appear 
to be ill-posed in that the growth rate of short 
wavelength perturbations is unbounded. We have 
also pointed to many factors which can influence 
the development of Taylor instability. These result 
in modifications to the simple form of the Euler 
equations, possibly so as to render them well- 
posed. However, in many cases of physical interest, 
the extra physical factors occur multiplied by a 
small parameter. In others words, they occur on 
small length scales, inaccessible to feasible calcu- 
lations. 

There are two obstacles to correct calculation in 
such circumstances. The small parameter, small 
length scale effects must somehow be included by 
mathematical or computational modeling. At the 
same time, it is necessary to avoid the incorrect 
simulation of physical effects by numerical arti- 
facts. In particular convergence under mesh 
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refinement, while a necessary aspect of validation 
for such problems, is not sufficient. Validation 
requires quantitative agreement with an indepen- 
dently correct calculation, analytic solution or 
laboratory experiment. 

The computational strategies which have been 
developed for this problem fall into the two classes: 
special purpose codes and general purpose codes. 
The special purpose codes are ones not readily 
adaptable to include the variety of physical factors 
mentioned above. This narrower scope permits 
analytic simplifications which are utilized to a 
maximum degree. 

Two notable examples of such codes have been 
developed by Menikoff and Zemach [34, 35] and 
by Baker, Meiron, and Orszag [36]. The 
Menikoff-Zemach code is based on conformal 
mappings. In the case of an infinite density ratio 
and two fluids in an infinite strip, a time dependent 
conformal mapping takes the region occupied by 
the heavy fluid into an infinite half strip. In this 
half strip, the known Green's function for Lap- 
lace's equation is used to express the interface 
velocity as a quadrature. The code of Baker et al. 
[36] is based on boundary integral techniques, in 
which the velocity potential is expressed as an 
integral over a dipole sheet distributed over the 
fluid interface. Coupled Fredholm integral equa- 
tions can then be derived which determine the 

strength of the dipole sheet, and its time devel- 
opment. 

The strong points of the special purpose codes 
are accuracy and speed. Thus they can be used to 
validate general purpose codes. Of course, these 
codes have also been applied in their own right to 
study several interesting questions. For example, 
the code of Baker et al. [36] has been used to study 
Taylor instability of a thin fluid layer [37] (fig. 6), 
and both codes have been used to confirm results 
on rising plane bubbles originally obtained by 
Birkhoff and Carter [32]. 

There have been numerous calculations of 
Rayleigh-Taylor instability using codes which 
solve the full (two-dimensional) Euler or 
Navier-Stokes equations. Notable examples in- 
clude the work of F. Harlow and J. Welch [38], B.J. 
Daly [39, 40], W.P. Crowley [29], J.R. Freeman, 
M.J. Clauser and S.L. Thompson [41], K.A. Meyer 
and P. J. Blewett [42, 43] as well as the work cited 
in refs. 5 and 37. 

Time does not permit a systematic review of this 
work, nor would it be easy to carry out such a 
review, even if time were not a constraint, because 
the published work often lacks the detail necessary 
to evaluate just what is done. 

I will instead merely summarize a few of my 
general impressions: 

The codes run up to an aspect ratio of ,~ 1 or 2, 

Infinite Fluid Loyer Finite Fluid Loyer 
3.0 

0.0 

Y 

-5 .0  Tr 37r 

× X 

Fig. 6. Plot o f  interfaces for Rayleigh-Taylor instability of  layered flow of  an ideal fluid. The Atwood number is unity. Left: Case 
of  a semi-infinite fluid. Right: A finite fluid layer. Figure is adapted from Verdon et al., ref. 37. 
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where they break down for reasons that are often 
not thoroughly understood. 

The codes have been used to study the effect of 
factors such as the Atwood number, surface ten- 
sion, viscosity, compressibility, thermal conduc- 
tivity and others on the development of the in- 
stability. The case of single frequency per- 
turbations is the one commonly treated; 

The results are often compared to those of the 
linear theory. In general, they lack sufficient valida- 
tion in the nonlinear regime. This is a situation 
which could be improved substantially if cross 
comparisons of general purpose codes were more 
common and more precise. 

I now want to turn briefly to a code which I have 
been working on with Glimm, McBryan, and 
Menikoff [44]. It is based on the method of front 
tracking, whose goal is to achieve the accuracy of 
a special purpose calculation within the context of 
a general purpose method. The main idea of front 
tracking is to introduce as a computational degree 
of freedom an interface consisting of a (codi- 
mension one) set of curves, composed for ex- 
ample of piecewise linear bonds joining vertices. 
The front is propogated using the velocity or 
acceleration fields of the fluid in the case of a 
fluid interface discontinuity. Thus, in the 
Rayleigh-Taylor problem front tracking is a mixed 
Euler-Lagrange approach, with the front being a 
Lagrangian degree of freedom and all other grid 
points being Eulerian. In the incompressible case, 
it is necessary to solve elliptic PDE's at each time 
step for the pressure and stream function. The 
density discontinuity leads to elliptic equations 
which are singular exactly on the interface, either 
in their coefficients or their source terms or both. 

I will not go into the computational strategies we 
employ to deal with these problems, or into the 
structure of the code and related computer science 
questions, or into a discussion of our current 
results since these points will be covered in Mc- 
Bryan's talk [45]. 

I would like to emphasize that in most cases of 
practical interest, one does not know in detail the 
nature of the many disturbances perturbing the 

fluid motion. In general, statistically distributed 
heterogeneities on various length scales will be 
present in the driving forces, the velocity fields and 
in other physical quantities. In some cases, these 
heterogeneities can strongly influence the fluid 
motion. Thus, an adequate treatment of 
Rayleigh-Taylor instability will require analysis 
not only of the growth of perturbations of fixed 
wavelength, but of statistical perturbations as well. 

The input to our code presently allows one to 
add a statistically distributed component on one or 
several length scales to the x and y components of 
the velocity or acceleration, to the vorticity in the 
interior of the fluid, and to other physical quan- 
tities [44]. This is done by using a random number 
generator to define a randomly distributed variable 
on a lattice of points in the (x, y )-plane. The 
computed functions are modified at ea6h time step 
by the addition of a random function. 

There are many points which need to be studied 
in connection with statistical perturbations. First, 
there are now two competing effects at work: 
heterogeneity and nonlinear growth of fixed per- 
turbations. Introduction of heterogeneity directly 
affects the physics. The driving forces associated 
with heterogeneity may set a length scale of their 
own for the formation of bubbles and spikes. 
These will compete with "and modify the de- 
velopment of deterministically specified per- 
turbations, which are channeled into their own 
length scales by the nonlinear dynamics. 

These points are illustrated in figs. 7-12. Fig. 7 
shows the growth of a small amplitude, fixed 
wavelength perturbation at an air-water interface 
(density ratio ~ 500: 1). In fig. 8, we show how the 
results in fig. 7 are modified when a strong statistical 
heterogeneity is added to the vorticity in the inte- 
rior of the fluids. In particular, two spikes are 
present now where there was one before. The 
velocity fields are displayed in figs. 9 and 10, to 
show the nature of the vorticity which has been 
added. 

In fig. 11, we show the evolution of a larger 
amplitude, fixed wavelength perturbation at an 
interface between fluids having a 4:1 density ratio. 
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Fig. 7. Nonlinear growth of a fixed wavelength, small ampli- 
tude perturbation. In this run the density ratio was PH/PL "~ 500, 
the initial implitude (in units of wave number x amplitude) was 
0.1, and the grid size was 48 x 48. 

Fig. 8. Growth of a fixed wavelength, small amplitude per- 
turbation in the presence of strong statistical heterogeneity in 
the vorticity in the interior of the fluid. Other parameters are 
as in fig. 7. 

Fig. 12 shows the effect of  adding a strong statisti- 
cal heterogeneity to the vorticity in this problem, 
which is to modify the speed and shape of  both 
bubble and spike. 

To obtain useful results, one will have to identify 
aspects of  the nonlinear growth which tend to be 
independent of  the details of  how the instability is 
excited. In other words, we need to seek func- 
tionals of  the solution which are statistically stable. 
These will be the quantities on which it is appropri- 
ate to base design considerations. It is my hope 
that our work can be joined to the very interesting 
results recentlyobtained by Youngs [46] in the case 
of  statistical perturbations of  an interface to learn 
more about  these questions in the near future. 

9. The late stage of Rayleigh-Taylor instability 

I next want to discuss some issues relating to the 
very late stage of  Rayleigh-Taylor instability, dur- 
ing which processes such as bubble amalgamation, 
spike break-up, and turbulent mixing occur. 

9.1. Bubble amalgamation 

A very primitive statistical model for the process 
of  bubble amalgamation was proposed quite some 
time ago by Wheeler and myself [47]. 

We suppose that after an initial period of  linear 
growth, one may consider the Taylor unstable 
interface to consist of  a collection of  bubbles of  
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Fig. 9. This figure shows the velocity field associated with the 
interface motion displayed in fig. 7. 

Fig. I0. This figure shows the velocity field associated with the 
interface motion displayed' in fig. 8. 

light fluid rising through a slab of  heavy fluid. The 
cross-sectional area of  the ith bubble is assumed to 
be circular, of  radius R~, so that it rises with a 
velocity given by the Davies-Taylor formula [30] 

• ( l O )  

We also suppose that the sizes of  the bubbles are 
not all the same, but are statistically distributed 
about an average size P~v. As a result, the bubbles 
will move at different rates and, in particular, a 
large bubble will move ahead of  a smaller neigh- 
bor. The experimental evidence suggests that two 
such neighboring bubbles will merge, forming a 
single larger bubble. 

Our first step was to write down a simple but 
crude set of  rules governing bubble merger. These 

were: 
Rule # 1. Two contiguous bubbles merge when; 

z+ -- z_ i> R_ . (11) 

Here z+(_)= (volume of  bubble)/(cross sectional 
area of  bubble )=  effective height of  large (small) 
bubble, R = radius of  smaller bubble. This rule 
expresses the idea that the lead of  the larger bubble 
over the smaller bubble necessary for merger will 
increase as the fraction R_IR+ increases. 

Rule # 2. Conservation of  cross-sectional area; 

IrR 2 - = ~R2+ + 7rR2_. (12) 

This rule provides a way to calculate the radius o! 
the merged bubble. 



14 D.H. Sharp~An overview of Rayleigh- Taylor instability 

C 

Fig. 11. Nonlinear growth of a fixed wavelength perturbation. 
In this run the density ratio w a s  PI~/PL = 4 ,  the initial amplitude 
(in units of wave number x amplitude) was 0.5, and the grid 
size was 20 x 20. 

Fig. 12. Growth of a fixed wavelength perturbation in the 
presence of strong statistical heterogeneity in the vorticity in the 
interior of the fluid. Other physical parameters are as in fig. 11, 
except that the grid size here was 40 x 40. 

Rule  # 3. Conserva t ion  o f  volume; 

nR~zm = nR~+z+ + zR~_z_. (13) 

This rule provides a way  to calculate the height o f  
the merged bubble. 

Thus  as initial condit ions one gives a statistically 
distributed set o f  values Ri and zi for  the collection 
o f  bubbles,  and  the connectivi ty o f  the bubble  
diagram. One can then follow the process o f  
bubble amalgamat ion ,  generat ion by generation. 

Analysis o f  the model  has led to two main  
results: 

(i) Since smaller bubbles get continual ly ab- 

sorbed into larger ones, and  the opposi te  process 

o f  break-up o f  large bubbles into small ones seems 

not  to occur,  the average size o f  the bubbles, and 

hence the average velocity o f  bubble rise, increases 
with time, 

Numerically,  we found  

1 1 
ray = k lg t ,  k ,  ,~ 2-0 to  10---6' (14) 

where g is the bulk acceleration o f  the slab o f  fluid. 
This leads to a simple prediction. The slab will 
travel a distance X = ~gt 2 in time t. In  this time, the 
bubble will advance a distance t$ = ½(klg)t 2 into the 
slab. The bubble breaks th rough  a slab o f  thickness 

H when 6 = H. Hence the slab can only travel a 
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distance L = (g/k~g)H before breakup, i.e., a slab 
can only be pushed a distance 20-100 times its 
thickness. 

(ii) A second prediction is that a bubble anom- 
alously larger than average will eventually grow to 
the point where a single large bubble will dominate 
the flow, provided the slab is thick enough for the 
merger process to go to completion before break- 
through. It does not seem to me that available 
computational and experimental information 
suffice to distinguish between the following possi- 
bilities: 

(a) one bubble always quickly runs away; 
(b) depending on the degree of anomaly in the 

original distribution of sizes, either one bubble 
runs away, or a standard, stable statistical distribu- 
tion in sizes is attained, with a corresponding 
standard law of growth; 

(c) a standard distribution of size and rate of 
rise is almost always reached. 

Nor does available information suffice to vali- 
date the rules of bubble merger which we have 
adopted. 

9.2. Break-up of spikes 

At this time, little can be said with confidence 
about the details of the processes whereby 
Rayleigh-Taylor spikes break up - into droplets or 
otherwise. In particular, droplet formation is a 
three-dimensional effect which occurs on a small 
length scale, and as such is likely to fall outside the 
scope of numerical computation for some time. 
Available experiments on Taylor instability are 
inadequate as a guide for modeling these effects. 

An objective in modeling spike break-up would 
be to derive semi-empirical formulae, valid in 
specified parameter ranges, for the spectra of drop- 
let sizes and velocities. This information could then 
provide the input for models of entrainment, trans- 
port, and mixing. 

In thinking about these questions, it may be 
helpful to regard the heavy falling spike as being 
somewhat analogous to a liquid jet, with the hope 
that some of the ideas that have been developed to 

analyze the stability and atomization of jets can be 
adapted to spikes. 

There are a variety of mechanisms leading to jet 
disintegration [48, 49]. One of the first studies was 
by Rayleigh [50], who showed that an idealized 
cylindrical jet is unstable to varicose perturbations 
if L > ~rD (L = length of the jet, D = jet diameter). 
This analysis ceases to apply if the jet is too thick 
or moves too fast, or if surface tension is negligible. 

Kevin-Helmholtz instability on the side of a jet 
is a frequent cause of jet break-up. In this case, the 
nonlinear phase of Kelvin-Helmholtz instability 
results in the formation of a turbulent mixing zone, 
which spreads into the jet. The size and shape 
of the mixing zone depends on the shape of 
the nozzle, the presence of turbulence and other 
factors. 

The formation of a mixing zone in the case of 
plane two-dimensional Taylor instability has re- 
cently been studied by Youngs [46, 51]. A very 
interesting, very important step has been taken 
towards understanding the mixing zone approach 
to spike break-up. I am glad Youngs was able to 
describe his work at this conference [52], because 
I do not have time to do it justice in this talk. 

Numerous patterns of drop sizes and velocities 
are observed to occur in the atomization regime of 
jet disintegration [48, 53, 54]. Factors affecting the 
character of these patterns include surface tension, 
viscosity and the nature of "aerodynamic" forces 
that may be present. The variability of the ob- 
served patterns also bespeaks the frequent presence 
of statistical heterogeneities. Hence in the en- 
gineering literature one finds several different drop 
size distributions used to correlate data. For exam- 
ple, one distribution for the probability p(d) for a 
drop to have a diameter between d and d + 6d is 
the Nukiyama-Tanasawa law [54] 

p(d) = .ald" e -W , (15) 

where A, b, m, and n are parameters. This law is 
interesting in that its general form can be derived 
from statistical considerations together with simple 
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(but not necessarily correct!) assumptions about 
droplet formation. 

10. The need for experiments 

I believe that to carry out informative experi- 
ments on the late stage of Rayleigh-Taylor in- 
stability is as difficult .a challenge for the experi- 
menter as the calcuation of this phase of the 
instability is for the theoretician. 

The classic experiments on Rayleigh-Taylor in- 
stability are those of Lewis [8] and Allred and 
Blount [55]. Additional experiments have been 
carried out by Duff, Harlow and Hirt [56], Em- 
mons, Chang and Watson [57], Ratafia [58], Cole 
and Tankin [59], Popil and Curzon [60], Read and 
Youngs [51], and J.F. Barnes et al. [61, 62]. 

The available experiments are adequate to 
confirm semi-quantitatively, or perhaps even quan- 
titatively, several predictions of the linear analysis 
for the initial growth of the instability. The experi- 
ments also provide pictures of the development of 
bubbles and spikes and the work of Ratafia [58] 
shows Kelvin-Helmholtz roll-up on the spike. Fur- 
thermore, the work of Lewis [8], Allred and Blount 
[58] and Read and Youngs [51] provides some 
information on bubble amalgamation. 

There is a clear need for more and better experi- 
ments. First, available experiments are still inade- 
quate for modeling the very late stage of Taylor 
instability, although the recent experiments of 
Read and Youngs [51] provide interesting new 
information on the mixing zone question. Second, 
experiments are needed to benchmark codes which 
compute Rayleigh-Taylor instability in circum- 
stances where accurate special purpose codes do 
not exist for comparison. 

To be of most use, the experiments should be 
designed with two criteria in mind: 

They should be analyzable to produce quan- 
titative data on the time history of the unstable 
interface. The quantitative data may well refer to 
appropriately chosen statistical quantities rather 

than to the detailed properties of a specific inter- 
face. 

The experiments should be performed in an 
environment where the equation of state of the 
fluids can be regarded as known. Compounding an 
analysis of fluid dynamics with uncertainties about 
material properties will result in confusion about 
both. 

11. Summary-critical issues 

I will close by summarizing what I consider to be 
some critical issues concerning Rayleigh-Taylor 
instability. 

First, it is very important to carry out three- 
dimensional calculations of Taylor instability [63]. 
There are several reasons for this: (a) Several 
features of Rayleigh-Taylor instability are intrin- 
sically three-dimensional, e.g., bubble merger, pro- 
cesses leading to the break-up of spikes, and 
turbulent mixing; (b) Experiments are likely to 
pertain to three-dimensional flows; (c) There may 
be some surprises. 

Second, it is important to assess the role of 
statistically distributed heterogeneities on the 
growth of the instability. Such heterogeneties will 
frequently be present in practical situations, and in 
some cases can modify the flow substantially. 

As a final remark, I think it is interesting to ask 
whether geometric structures having fractal prop- 
erties can be helpful in understanding a possible 
chaotic limit of Taylor instability [64]. 

The background for this idea is roughly as 
follows. It has been suggested [65] that in fully 
developed three-dimensional turbulence, in the 
limit as the Reynolds number approaches infinity, 
geometric structures are formed having the proper- 
ties of fractal sets. The formation of objects on 
smaller and smaller length scales is believed to 
be the result of repeated generations of 
Kelvin-Helmholtz instability. The new idea is that 
the eddies formed in this way may not be space- 
filling. One consequence of this picture is so-called 
intermittancy in turbulence; another is correc- 
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t ions to the self-similar behavior  described by 

Ko lmogorov ' s  Law. 

We believe that  a Tay lor  uns table  interface is 

also subject to K e l v i n - H e l m h o l t z  instabil i ty.  Par-  

ffcularly in the case where surface tens ion is 

negligible, could successive generat ions  of  

Ke lv in -He lmho l t z  instabil i ty,  possibly ini t iated by 

small scale heterogeneities, lead to a fractalized 

interface evolving in a self-similar manne r?  W h a t  

would  be some observable  consequences  of  this 

behavior? 
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